

OCN Review

CARCINOGENESIS PATHOPHYSIOLOGY DIAGNOSIS AND STAGING

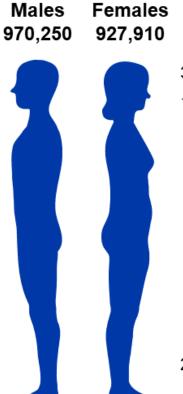
Brian Beardslee, MSN, RN

What is the socioeconomic impact of cancer

- Who are the people who have cancer
- What are the risk factors that lead to cancer
- What do we know about cancer cells
- How do we detect cancer
- What might we do to prevent cancer

THINGS TO CONSIDER

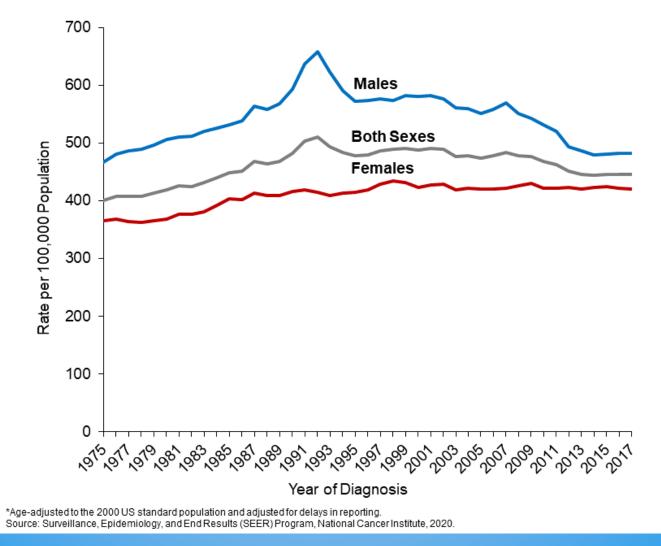
THE IMPACT OF CANCER

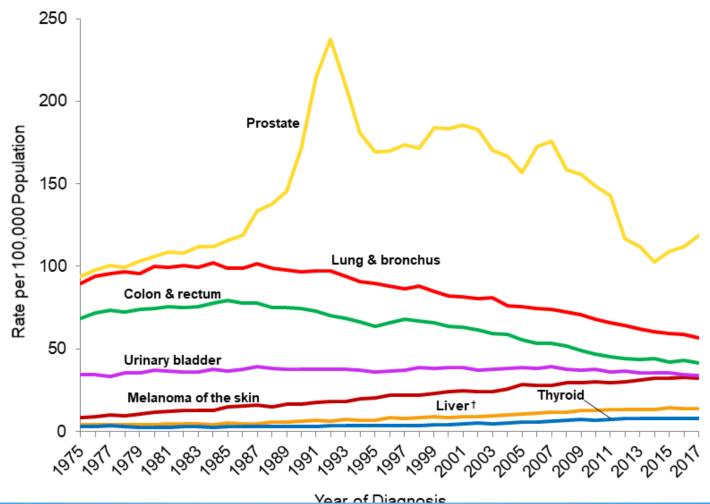

- Cancer is a major public health problem.
 One in four U.S. deaths due to cancer.
- In 2021, there will be an estimated 1.9 million new cancer cases diagnosed in the United States
- 606,570 estimated cancer deaths for
 2021 in the United States.
- In 2019, approximately 140,690 cancer
 cases diagnosed and about 103,250 cancer
 deaths among the <u>oldest old</u> in the US.
- Cancer in the <u>oldest old</u> accounts for 8% of all cases diagnosed in the US with 17% of all cancer deaths.
 2021 American Cancer Society

THE IMPACT OF CANCER

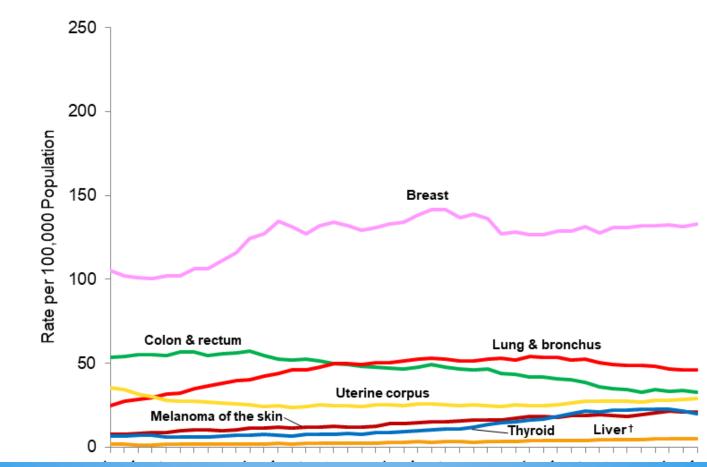
- Places a high economic burden on society.*
 - National Cancer Institute estimates
 that cancer-related cost were183
 billion in 2015 and are projected to
 increase to 246 billion in 2030, a 34%
 increase based upon population
 growth and aging alone
 - Economic burden on patients
 - Lost productivity
 - Loss of contribution to family and significant others

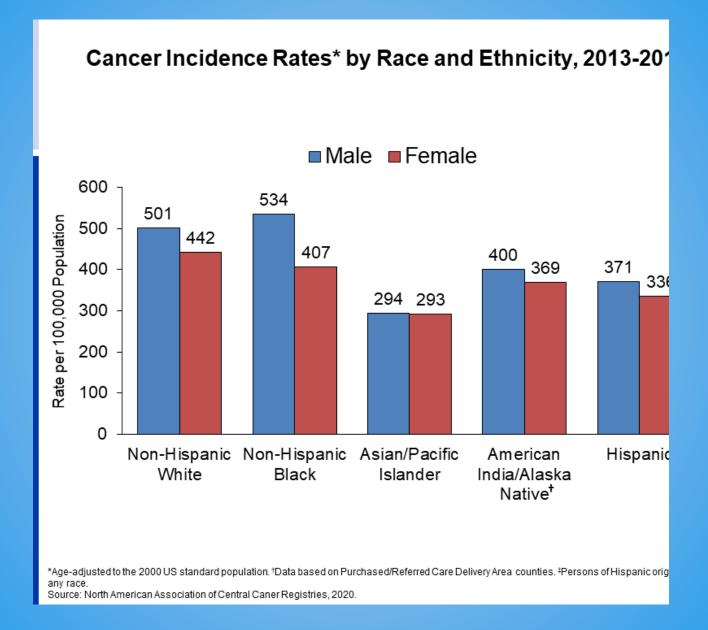
Estimated New Cancer Cases* in the US in 2021

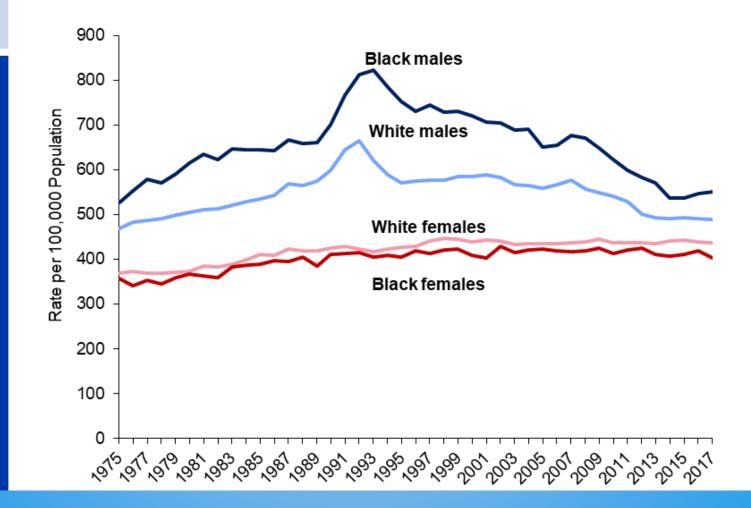

Prostate 26% 12% Lung & bronchus Colon & rectum 8% 7% Urinary bladder Melanoma of the skin 6% 5% Kidney & renal pelvis 5% Non-Hodgkin lymphoma Oral cavity & pharynx 4% Leukemia 4% Pancreas 3% All other sites 20%


30% Breast 13% Lung & bronchus 8% Colon & rectum 7% Uterine corpus Melanoma of the skin 5% 4% Non-Hodgkin lymphoma 3% Thyroid 3% Pancreas 3% Kidney & renal pelvis 3% Leukemia 21% All other sites

*Excludes basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder.




Trends in Cancer Incidence Rates* Among Females, US, 1975-2017


POLL QUESTION:

Which demographic group has the highest cancer incidence rate?

- 1. White males
- 2. White females
- 3. Black males
- 4. Black females

Trends in Cancer Incidence Rates* by Sex and Race, US, 1975-2017

The Lifetime Probability of Developing Cancer for Males, 2015-2017

Site	Risk
All sites*	1 in 2
Prostate	1 in 8
Lung & bronchus	1 in 15
Colon & rectum	1 in 23
Urinary bladder [†]	1 in 26
Melanoma of the skin‡	1 in 27
Non-Hodgkin lymphoma	1 in 42
Kidney & renal pelvis	1 in 46
Leukemia	1 in 55
Oral cavity & pharynx	1 in 60
Pancreas	1 in 60

*All sites exclude basal cell and souramous cell skin cancers and in situ cancers excent urinary bladder. tincludes invasive and in situ cancer cases

The Lifetime Probability of Developing Cancer for Females, 2015-2017

Site	Risk
All sites*	1 in 3
Breast	1 in 8
Lung & bronchus	1 in 17
Colon & rectum	1 in 25
Uterine corpus	1 in 32
Melanoma of the skin [†]	1 in 40
Non-Hodgkin lymphoma	1 in 52
Thyroid	1 in 53
Pancreas	1 in 62
Leukemia	1 in 78
Ovary	1 in 82

Trends in Five-year Relative Survival Rates (%), 1975-2016

Site	1975-1977	1987-1989	2010-2016
All sites	49	55	67
Breast (female)	75	84	90
Colorectum	50	60	65
Leukemia	34	43	64
Lung & bronchus	12	13	21
Melanoma of the skin	82	88	93
Non-Hodgkin lymphoma	47	51	73
Ovary	36	38	49
Pancreas	3	4	10
Prostate	68	83	98
Urinary bladder	72	79	77

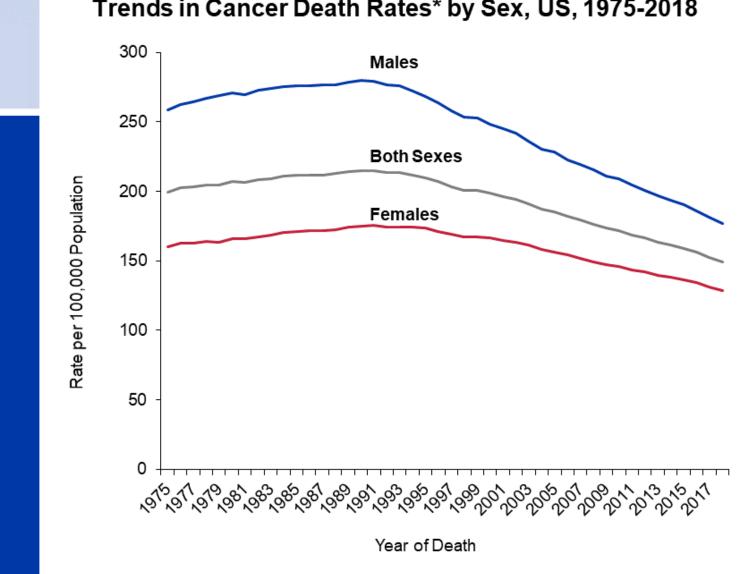
Five-year Relative Survival Rates (%) by Race, 2010-2016

Site	White	Black	Absolute Difference
All Sites	68	62	6
Breast (female)	91	82	9
Colorectum	65	59	6
Esophagus	21	14	7
Non-Hodgkin lymphoma	73	68	5
Oral cavity & pharynx	68	50	18
Ovary	48	41	7
Prostate	98	96	2
Urinary bladder	77	64	13
Uterine cervix	68	56	12
Uterine corpus	84	63	21

POLL QUESTION:

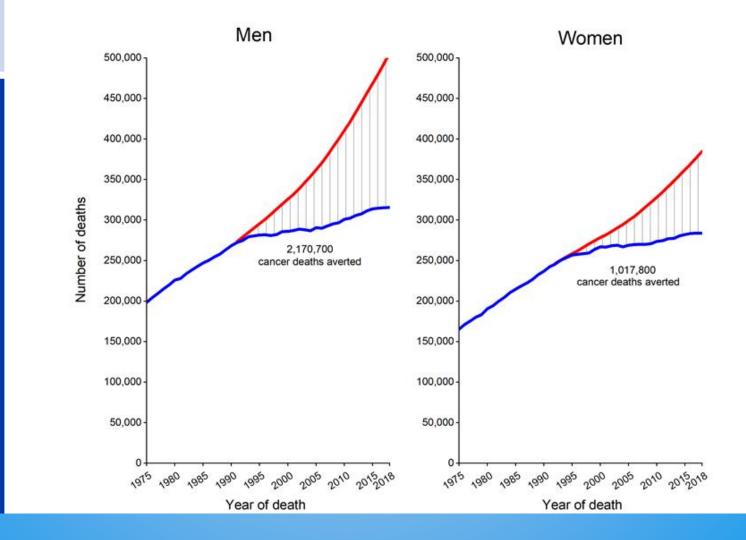
Which cancer has the highest projected death rate for males in 2021?

- 1. Prostate
- 2. Brain
- 3. Colon/rectum
- 4. Lung & Bronchus

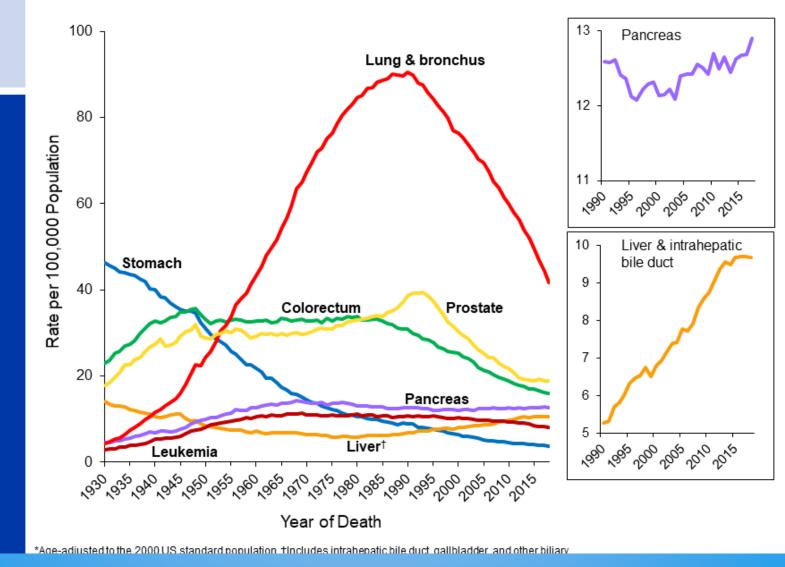

POLL QUESTION:

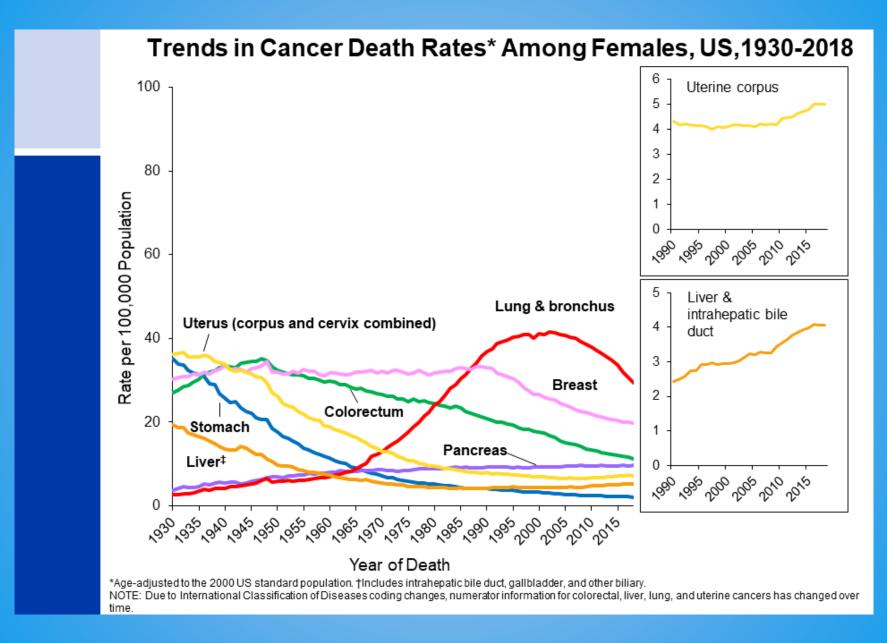
Which cancer has the highest projected death rate for females in 2021?

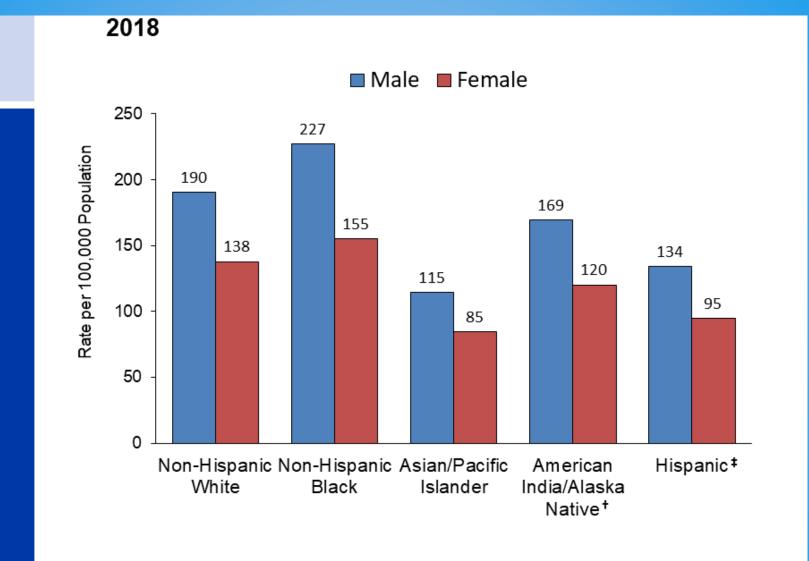
- 1. Breast
- 2. Pancreas
- 3. Colon/rectum
- 4. Lung & Bronchus


Estimated Cancer Deaths in the US in 2021

		Males 319,420	Females 289,150		
Lung & bronchus	22%		,	22%	Lung & bronchus
Prostate	11%			15%	Breast
Colon & rectum	9%			8%	Colon & rectum
Pancreas	8%			8%	Pancreas
Liver & intrahepatic bile duct	6%			5%	Ovary
Leukemia	4%			4%	Uterine corpus
Esophagus	4%			3%	Liver & intrahepatic bile duct
Urinary bladder	4%			3%	Leukemia
Non-Hodgkin lymphoma	4%			3%	Non-Hodgkin lymphoma
Brain & other nervous system	3%			3%	Brain & other nervous system
All other sites	25%			26%	All other sites




Trends in Cancer Death Rates* by Sex, US, 1975-2018


Total Number of Cancer Deaths Averted from 1991 to 2018

Trends in Cancer Death Rates* Among Males, US, 1930-2018



*Per 100,000, age-adjusted to the 2000 US standard population. † Data based on Purchased/Referred Care Delivery Area counties. *Persons of Hispanic origin may be of any race.

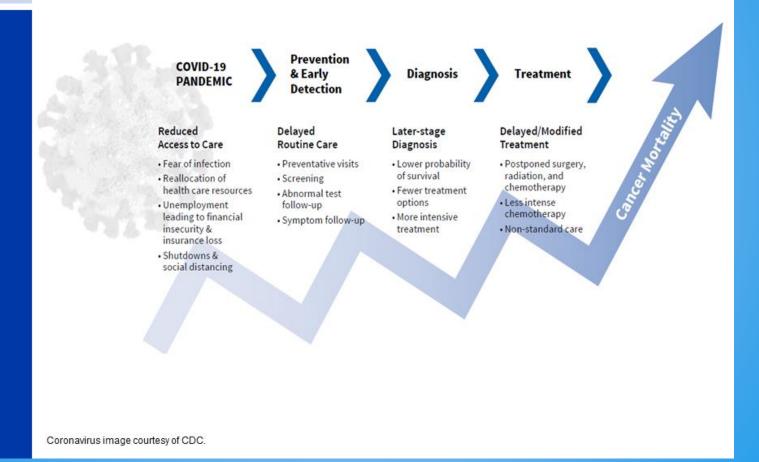
Sources: National Center for Health Statistics, Centers for Disease Control and Prevention, 2020.

Trends in Cancer Death Rates* by Sex and Race, US, 1975-20

Common Cancer Types in the United States

Cancer Type	Estimated New Cases	Estimated Deaths
Bladder	81,400 *	17,980 *
Breast (Female-Male)	276,480 – 2620 *	42,170 – 520 *
Colon and Rectal (Combined)	156,540 *	66,700 *
GYN Cancers	113,520 *	33,620 *
Kidney (Renal Cell and Renal Pelvis Cancer)	73,750 *	14,830 *
Leukemia (All Types)	63, 530 *	23,100 *
Liver and Intrahepatic Bile Duct	42,810	30,160 *
Lung (Including Bronchus)	228,820 *	135,720 *
Melanoma	32,270	12,830
Non-Hodgkin Lymphoma	74,240 *	19,940 *
Pancreatic	57,600*	47,050*
Prostate	101,930 *	33,330 *
Thyroid	52,070	2,180

Common Cancer Types in the United States

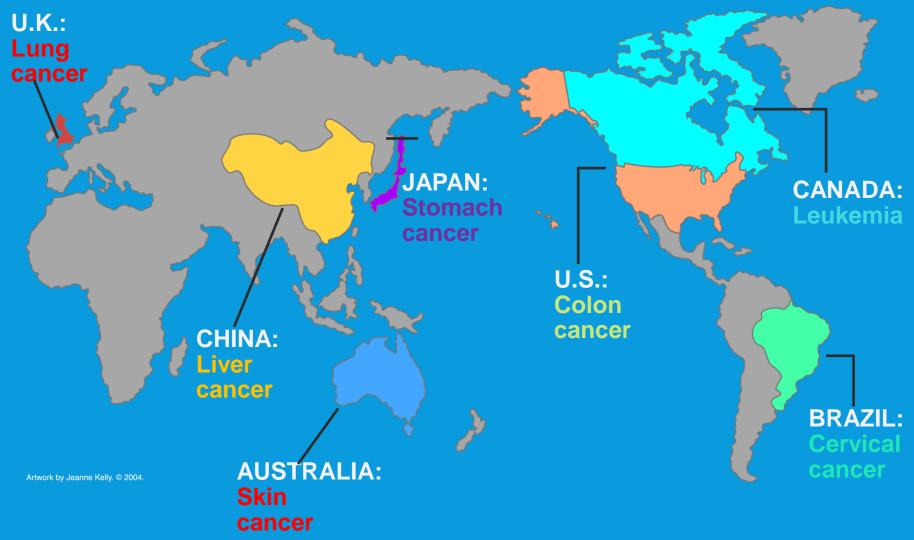

Cancer Type	Estimated New Cases	Estimated Deaths
Bladder	81,400 *	17,980 *
Breast (Female-Male)	276,480 – 2620 *	42,170 - 520 *
Colon and Rectal (Combined)	156,540 *	66,700 *
GYN Cancers	113,520 *	33,620 *
Kidney (Renal Cell and Renal Pelvis Cancer)	73,750 *	14,830 *
Leukemia (All Types)	63, 530 *	23,100 *
Liver and Intrahepatic Bile Duct	42,810	30,160 *
Lung (Including Bronchus)	228,820 *	135,720 *
Melanoma	32,270	12,830
Non-Hodgkin Lymphoma	74,240 *	19,940 *
Pancreatic	57,600*	47,050*
Prostate	101,930 *	33,330 *
Thyroid	52,070	2,180

American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2020

Table 2. Estimated Number* of New Cases for Selected Cancers by State, US, 2020

State	All sites	Female breast	Uterine cervix	Colon & rectum	Uterine corpus	Leukemia	Lung & bronchus	Melanoma of the skin	Non- Hodgkin lymphoma	Prostate	Urinary bladder
Alabama	28,570	4,120	240	2,460	780	810	4,230	1,550	1,000	3,530	1,090
Alaska	2,960	510	+	320	120	90	400	120	120	340	160
Arizona	36,730	5,630	260	3,010	1,240	990	4,200	2,380	1,500	3,830	1,810
Arkansas	17,200	2,430	140	1,540	500	630	2,760	800	650	1,860	760
California	172,040	30,650	1,630	15,530	7,030	6,060	18,040	10,980	8,200	20,160	7,780
Colorado	27,290	4,530	190	2,040	920	910	2,550	1,920	1,150	3,140	1,250
Connecticut	20,300	3,590	130	1,520	910	400	2,650	1,110	930	2,320	1,080
Delaware	6,660	960	†	470	220	230	890	420	260	770	320
Dist. of Columbia	3,600	510	†	250	120	110	300	90	130	370	80
Florida	150,500	19,900	1,130	11,310	4,460	3,370	18,150	8,750	7,170	13,950	6,780
Georgia	55,190	8,340	440	4,660	1,710	1,550	7,240	3,190	2,280	6,840	2,110
Hawaii	6,800	1,300	60	730	330	230	870	520	290	700	300
Idaho	8,540	1,340	60	730	310	340	990	740	390	1,160	470
Illinois	71,990	11,020	540	6,240	2,850	2,400	9,210	3,700	2,920	8,000	3,310
Indiana	37,940	5,410	270	3,410	1,430	1,290	5,700	2,370	1,590	3,570	1,720
lowa	18,460	2,710	110	1,600	700	840	2,440	1,150	800	1,920	870
Kansas	16,170	2,390	110	1,320	560	620	2,020	890	650	1,730	640
Kentucky	26,500	3,800	200	2,440	870	920	4,890	1,330	1,040	2,440	1,130
Louisiana	26,480	3,910	260	2,370	690	930	3,700	1,030	1,110	2,970	1,050
Maine	8,180	1,370	50	670	390	160	1,430	520	390	800	520
Maryland	34,710	5,500	250	2,570	1,300	820	3,930	1,780	1,330	4,410	1,360
Massachusetts	36,990	6,690	220	2,650	1,630	580	5,150	2,190	1,670	3,890	1,970
Michigan	61,770	8,800	360	4,620	2,380	2,060	8,140	3,290	2,450	6,820	2,890
Minnesota	33,210	4,670	140	2,320	1,200	1,600	3,580	1,750	1,350	2,880	1,460
Mississippi	17,190	2,390	160	1,730	450	500	2,510	620	570	2,050	630
Missouri	37,540	5,360	270	3,090	1,290	1,370	5,540	1,820	1,410	3,540	1,580
Montana	5,850	960	†	500	220	250	770	450	250	680	330
Nebraska	10,560	1,580	70	940	390	480	1,270	610	450	980	470
Nevada	16,540	2,310	130	1,480	480	520	1,850	840	650	1,780	780
New Hampshire	8,060	1,350	†	590	370	180	1,220	530	370	910	510

Potential Impact of the COVID-19 Pandemic on Future Cancer Outcomes



CANCER THROUGHOUT THE WORLD

- 2000: 10 million new cases and 6 million deaths due to cancer
- 2020: 15 million new cases and 12 million deaths due to cancer
- Estimate 70% of cancer-related deaths will occur in developing countries due to poor resources
- 80-90% of cancer patients in developing countries will have incurable cancer at time of diagnosis, leading to long-term survival rates about half of those in the U.S.

Population-Based Studies

Regions of Highest Incidence

EPIDEMIOLOGY

- World Health Organization (WHO)
- American Cancer Society (ACS)
- National Cancer Institute SEER Program
- www.SEER.cancer.gov
- Surveillance, Epidemiology and End Results
 - Incidence
 - Prevalence
 - Mortality rate
 - patient demographics
 - primary tumor site
 - tumor morphology
 - stage at diagnosis

FAST STATS

Fast Stats is an interactive tool for quick access to key SEER and US cancer statistics for major cancer sites by age, sex, race/ethnicity and data type. Statistics are presented as graphs and tables

TERMINOLOGY

• Incidence

 The number of new cases of a specific type occurring in a specific population in one year

Mortality

The number of deaths of a specific type occurring in a specific population in one year

• Prevalence

- The number of people alive on a certain date who previously had a diagnosis of cancer .
- Survival
 - In general, defined as people with NED at 5 years

THE GOOD NEWS . . .

- The death rate from all cancers combined has decreased by 1.5% per year for men since 1993, and by 0.8% per year for women since 1992.
- The mortality rate has continued to decrease from the three most common sites in men (lung, colorectal, and prostate), and from breast and colorectal cancers in women.

MORE GOOD NEWS . .

- Advances in molecular and cellular biology are broadening our understanding of carcinogenesis, and new treatment modalities are being developed accordingly.
- There are nearly 10 million cancer survivors today.

MORE GOOD NEWS . .

More targeted therapies:

- * As more is learned about the molecular biology of cancer, researchers will have more targets for their new drugs.
- Along with more monoclonal antibodies and small signaling pathway inhibitors
 - > new classes of molecules
 - antisense oligodeoxynucleotides
 - small interfering RNA (siRNA).

Immunotherapy:

Drugs aimed at specific immune checkpoints are being developed to help the immune system better kill cancer cells.

More on cancer genetics:

Researchers are looking for gene mutations that cause some patients to respond better to certain drugs.

Nanotechnology:

- * New technology for producing materials that form extremely tiny particles is leading to very promising imaging tests that can more accurately show the location of tumors.
- It also is aiding the development of new ways to deliver drugs more specifically and effectively to cancer cells.

Robotic surgery:

- * This term refers to manipulation of surgical instruments remotely by robot arms and other devices controlled by a surgeon.
- Robotic systems have been used for several types of cancer surgery;
 - radical prostatectomy is among the most common uses in surgical oncology.
- *As mechanical and computer technology improve, some researchers expect future systems will be able to remove tumors more completely and with less surgical trauma.

- Expression profiling and proteomics:
 - Expression profiling lets scientists determine relative output of hundreds or even thousands of molecules (including the proteins made by RNA, DNA, or even a cell or tissue) at one time.
 - *Knowing what proteins are present in cells can tell scientists a lot about how the cell is behaving.
 - In cancer, it can help distinguish more aggressive cancers from less aggressive ones and can often help predict which drugs the tumor is likely to respond to.

Expression profiling and proteomics:

- * Proteomic methods are also being tested for cancer screening.
- *For most types of cancer, measuring the amount of one protein in the blood is not very good at finding early cancers.
- * Researchers are hopeful that comparing the relative amounts of many proteins may be more useful, and that finding large amounts of certain proteins and less of others can provide accurate, useful information about cancer treatment and its outcomes.
- Proteins (and other types of molecules) are even found in exhaled breath, which is now being tested to find out if it can show early signs of lung cancer.

*This is an exciting area of research and early results in <u>lung</u> and <u>colorectal cancer</u> studies have been promising.

POLL QUESTION:

African Americans are more likely to be diagnosed with cancer at advanced stages of their disease.
1. TRUE

2. FALSE

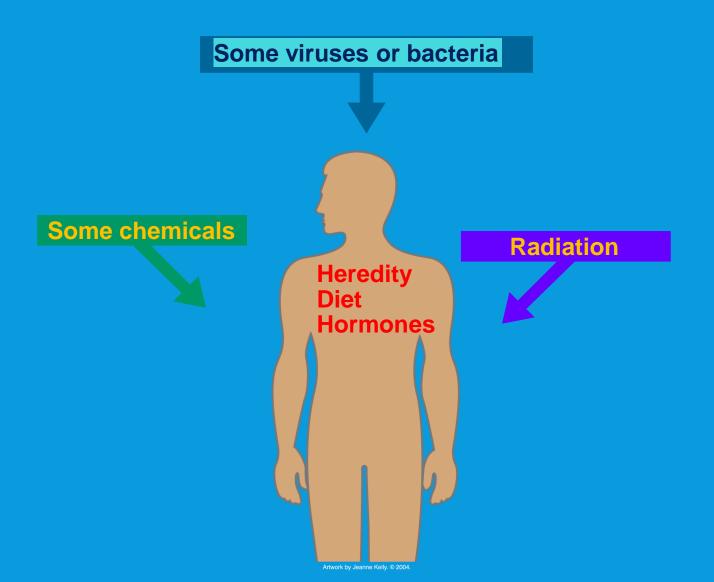
RACIAL DISPARITIES

- African Americans are more likely to be diagnosed at advanced stages of their disease.
- African American men and women have a greater chance of dying from their disease.
- 5-year relative survival is lower among African Americans than in Whites at every stage of diagnosis and nearly for every cancer site.

 An identifiable trait or habit that is statistically associated with an increased susceptibility for disease

- Viral
 - Hepatitis
 - HPV
 - HIV
 - EBV
 - HTLV-1
- Genetics
 - Heredity
 - Oncogenes
 - Suppressor Genes

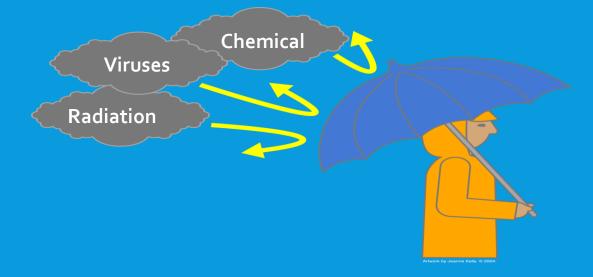
- Absolute Risk
 - Expressed as number of cases per 100,000
 - Average
- Relative Risk
 - Relates to one group
- Can you change the numbers???


- Modifiable
- Not modifiable
- Cancer is caused by complex interactions between genes and a variety of external factors
- Recognizing risk factors identifies individuals at greater risk for cancer and provides opportunity to intervene or modify risk

POLL QUESTION:

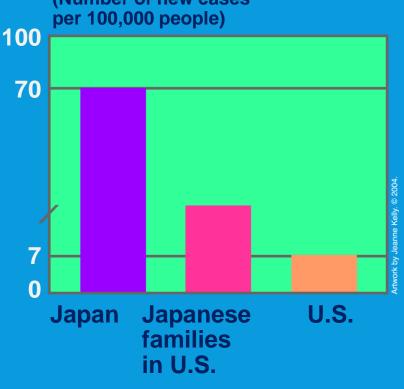
What are the causes of cancer?

- 1. Viruses or bacteria
- 2. Chemicals
- 3. Radiation
- 4. Heredity, Diet, Hormones
- 5. Bad Luck
- 6. All of the above


What Causes Cancer?

LIFESTYLE RISK FACTORS

- Diet
- Exercise
- Substance use
- Radiation exposure
- Chemical exposure



- Inherited from one or both parents
- Mutations occur in the germ cells
- These cancers represent very small number of cancers
- Examples
 - Li Fraumeni Syndrome, familial melanoma, retinoblastoma and some colon cancers

Heredity? Behaviors? Other Factors?

Colon Cancer (Number of new cases per 100,000 people) 100 **50** 5 0 U.S. Japan Japanese families in U.S.

Stomach Cancer (Number of new cases

MODIFIABLE RISK FACTORS

- Tobacco
- "Second hand "tobacco exposure
 - Workplace,
 - Home
 - Community
- Diet
 - Acrylamide (potato chips, French fries)
 - Red and processed meats/high fat
 - Artificial Sweeteners

MODIFIABLE RISK FACTORS

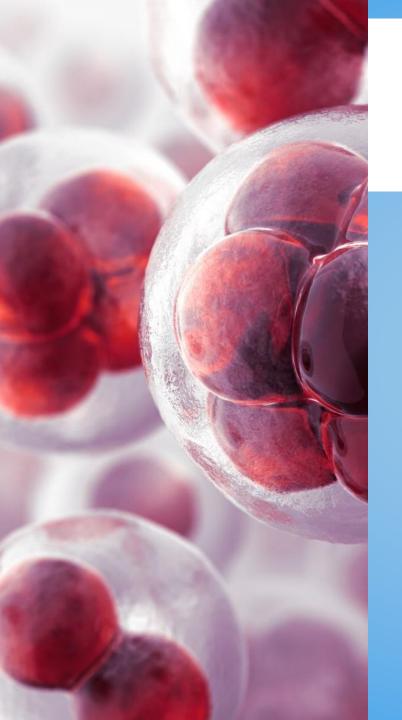
Environmental pollutants

MODIFIABLE Hormones RISK Alcohol FACTORS Sedentary lifestyle

Consist of a sequence of DNA that codes for a specific protein They code for proteins whose normal function is to correct errors that arise when cells duplicate their DNA prior to cell division.

Individual units of hereditary information located at specific positions on a chromosome

GENES



Focuses on the structure function and abnormalities of the chromosomes to diagnose both solid and hematologic cancers

CYTOGENETICS

Supports a personal approach to diagnose and treat cancers

GENETIC RISK FACTORS

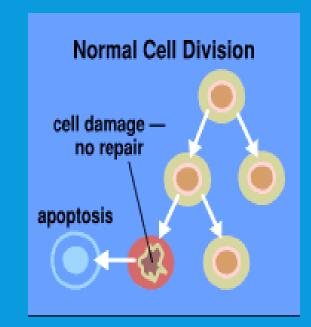
- Oncogenes may give rise to cancers when they are altered
 - Suppressor genes :
 - BRCA1 repair
 - BRCA2 repair
 - Proto-oncogenes
 - RAS
 - ERB
 - ABL

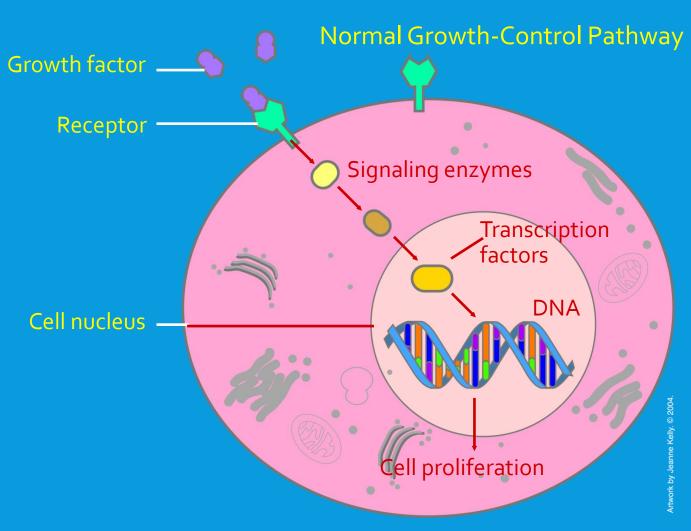
CHARACTERISTICS OF CELLS

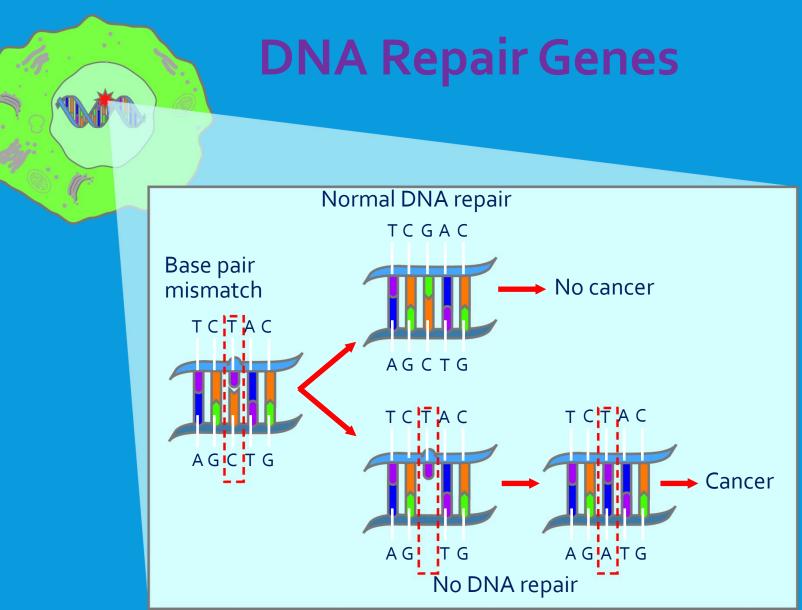
- Regular size and shape
- Function
- Predictable life span
- Genetic programming
- Responsive to bio feedback mechanisms
- Apoptosis (cell death)

all cells come from preexisting cells

NORMAL CELL FUNCTION 101


vital functions of an organism occur within cell


all cells contain the <u>hereditary</u> <u>information</u> necessary for regulating cell functions and for transmitting information to the next generation of cells.


CELL REPLICATION

- Occurs billions of times every 24 hours to replace damaged or worn-out cells or produce proteins that support life
- Process "turned on" by growth factors
- Driven and moderated by genes
- Repair genes
 - Surveillance genes
 - Killer (suppressor) genes

NORMAL CELL REPLICATION

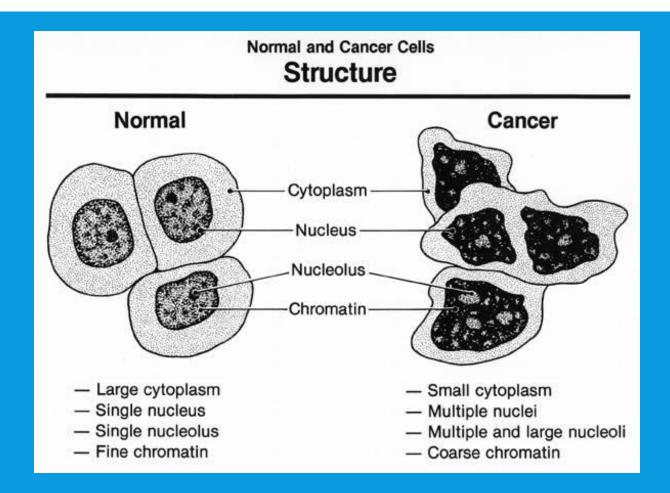
twork by Jeanne Kelly. © 200

CANCER CELLS

- DNA damage/Cellular Abnormalities
- Uncontrolled replication
- Dedifferentiation
- Ability to spread
 - Invasion
 - Angiogenesis
 - Metastasis

PROPERTIES OF CANCER CELLS

- Cytological changes
 - Size and number
 - Nuclear/cytoplasmic ratio
- Altered cell growth
 - Immortality
 - Growth inhibition/cell cycle control
 - Angiogenesis
- Cell membrane changes
 - New antigens
 - Over expression of antigen

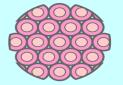

HOW CANCER CELLS DIFFER FROM NORMAL CELLS

- DNA errors
- Reproductive errors
- Dedifferentiation
- Uncontrolled proliferation

EVOLUTION OF A MALIGNANT PROCESS

- Genetic mutations or injuries
- Hormonal influences
- Environmental factors
 - Chemical exposure
 - Radiation
- Viruses
- Bad luck
- Cancer is caused by complex interactions between genes and a variety of external factors

NORMAL VERSUS MALIGNANT

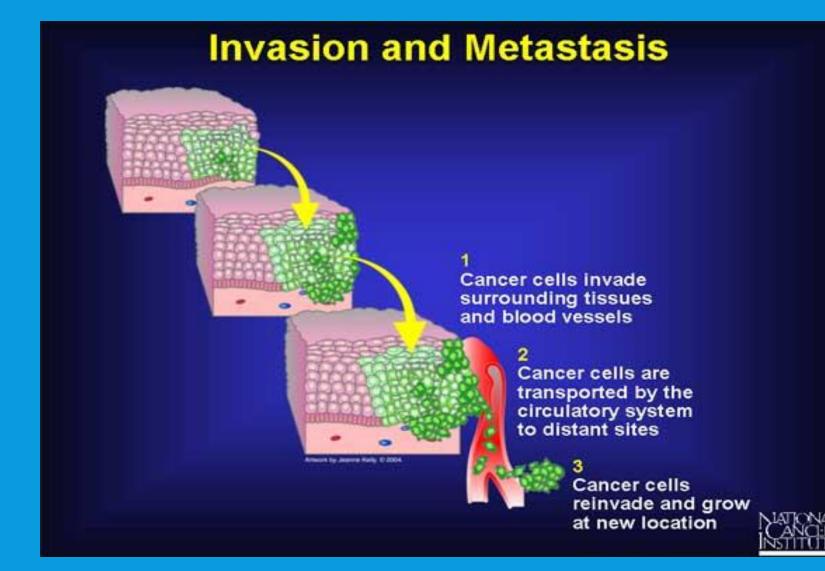

Mutations and Cancer

Genes Implicated in Cancer

The prime suspects	But
Mutations in:	Other mutations also occur in:
Oncogenes	Cell death genes
Tumor suppressor genes	Cell signaling genes
DNA repair genes	Cell cycle checkpoint genes
	Cellular senescence genes
	Cellular differentiation genes
	Metastasis/invasion genes
	Carcinogen –activating genes –deactivating genes

Normal Large number of irregularly shaped dividing cells Large, variably shaped nuclei Small cytoplasmic volume relative to nuclei Variation in cell size and shape Loss of normal specialized 00 cell features

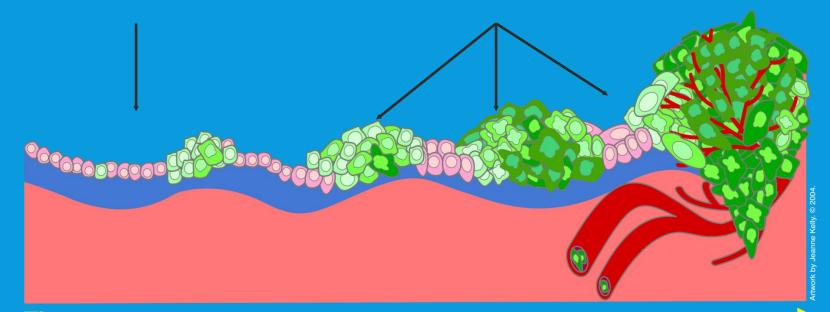
Disorganized arrangement of cells



Poorly defined tumor boundary

Stages of Malignant Transformation

- Initiation: irreversible DNA damage.
- Promotion: cells with genetic defects start multiplication.
- (Promoters are substances that enhance tumor growth by stimulating proliferation, immune suppression, etc.).
- Progression: neoplastic cells → malignant tumor → invasion of healthy tissue.

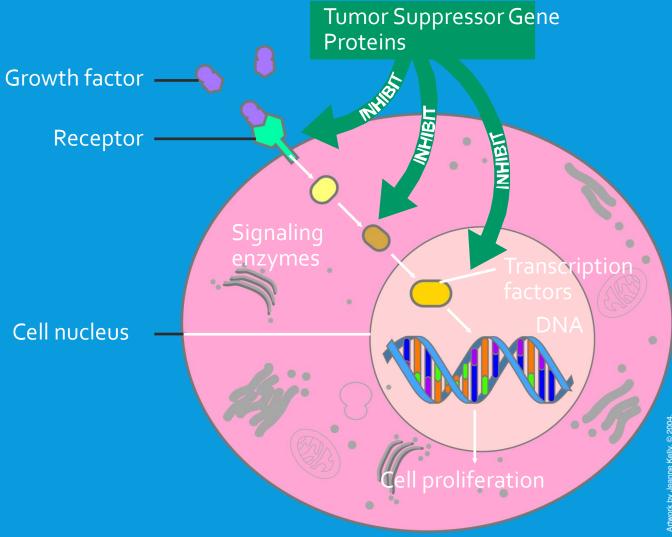

MALIGNANT TRANSFORMATION/METASTASIS

- Detachment
- Invasion
- Survival in transport
- Arrest in distant organ
- Establishment of secondary tumor

- Initiation
 - cell type specific
 - Chemical/radiation/etc.
- Promotion
 - Proliferation free for all
 - Dysplasia, CIS
- Progression

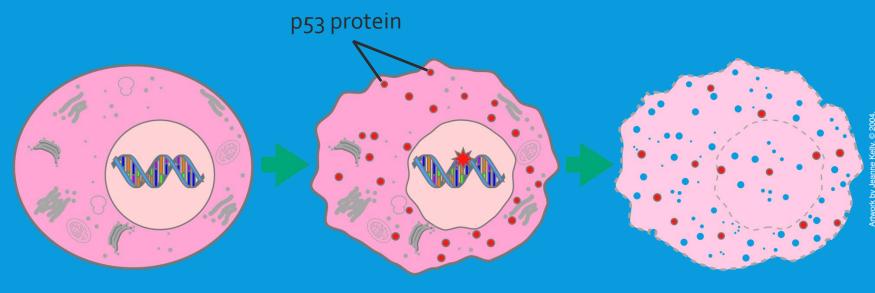
Cancer Tends to Involve Multiple Mutations

Benign tumor cells grow only locally and cannot spread by invasion or metastasis Malignant cells invade neighboring tissues, enter blood vessels, and metastasize to different sites


Time Mutation Cells inactivates proliferate suppressor gene

Mutations inactivate DNA repair genes Protooncogenes mutate to oncogenes More mutations & more genetic instability, metastatic disease

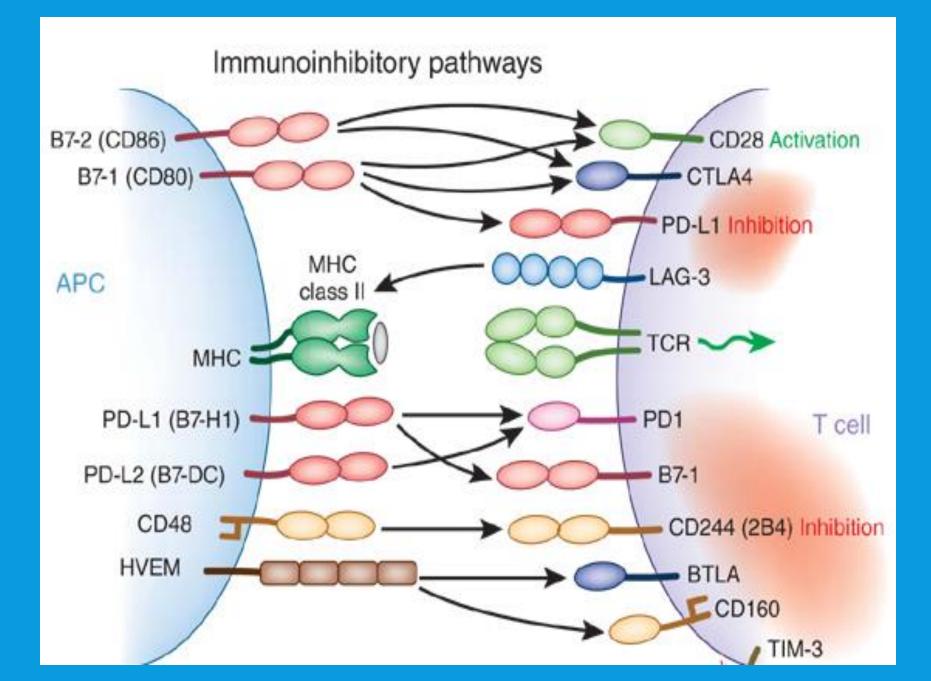
WHAT IS THE DIFFERENCE BETWEEN PROTO-ONCOGENES AND TUMOR SUPPRESSOR GENES


- **Proto-oncogenes** function as regulators of cell growth
- **Proto-oncogenes** have a role in DNA repair
- **Proto-oncogenes** are normal genes essential for normal cell growth
- **Tumor suppressor genes** function as regulators of cell growth
- **Tumor suppressor genes** are a type of repair gene

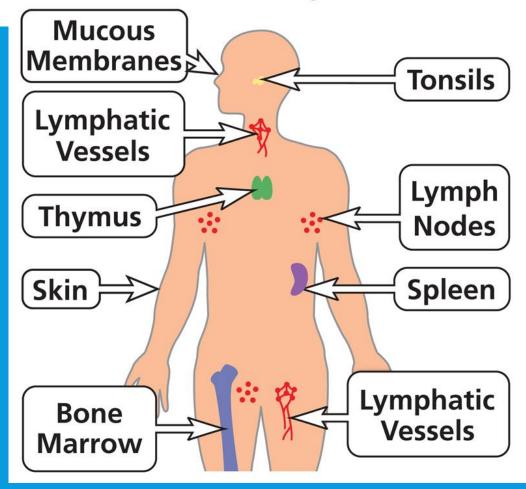
Tumor Suppressor Genes Act Like a Brake Pedal

work by Jeanne Kelly. © 20

P53 Tumor Suppressor Protein Triggers Cell Suicide


Normal cell

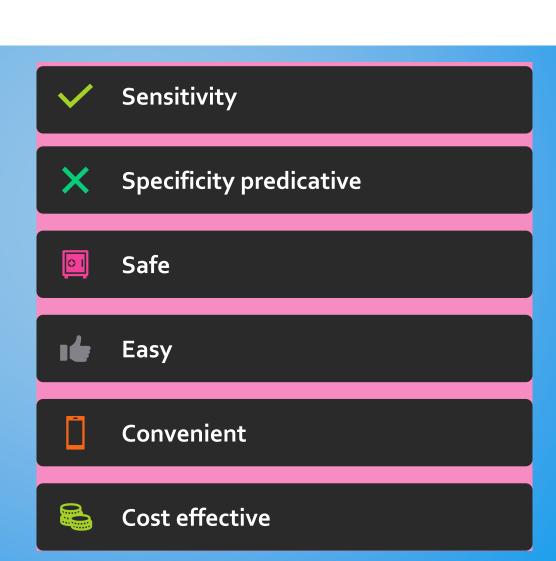
Excessive DNA damage


Cell suicide (Apoptosis)

IMMUNE SURVEILLANCE

- As tumor cells differentiate, they produce proteins or antigens expressed on the cell surface
- Immune system recognizes these cells as non-self
- An immune response is mounted in defense
- Through a variety of mechanisms, the immune system destroys the foreign/non-self object (NK cells, cytotoxic T Cells, etc.)
- Tumors can develop if they evade Immune surveillance

Immune System


DETECTION

Screening
Symptoms
Happenstance

SCREENING

- Identify asymptomatic persons worth risk factors for a disease
- Detect occult disease
- Direct patients to genetic counseling
- Reassurance

ATTRIBUTES OF SCREENING

EVIDENCE BASED SCREENING

- National Comprehensive Cancer Network (NCCN)
- American Cancer Society (ACS)
- National Cancer Institute (NCI)
- American College of Obstetricians and Gynecologists(AGOC)

SCREENING GUIDELINES-AMERICAN CANCER SOCIETY

- Colorectal
- Skin
- Breast
- Cervical
- Testicular
- Prostate
- Lung

SCREENING EXAMPLES

- Radiological (Mammography)
- Clinical Laboratory Testing (Pap Smears, Fecal Occult Blood Tests, PSA Test)
- Procedural (Colonoscopy, Sigmoidoscopy)
- Physical Exam (BSE/TSE, clinical breast/testicular exam, Digital Rectal Exam)

BREAST CANCER

- Women ages 40 to 44 should have the choice to start annual breast cancer screening with mammograms (x-rays of the breast) if they wish to do so.
- Women aged 45 to 54 should get mammograms every year.
- Women 55 and older should switch to mammograms every 2 years or can continue yearly screening.
- Screening should continue if a woman is in good health and is expected to live 10 more years or longer.
- All women should be familiar with the known benefits, limitations, and potential harms linked to breast cancer screening. They also should know how their breasts normally look and feel and report any breast changes to a health care provider right away.

PROSTATE CANCER

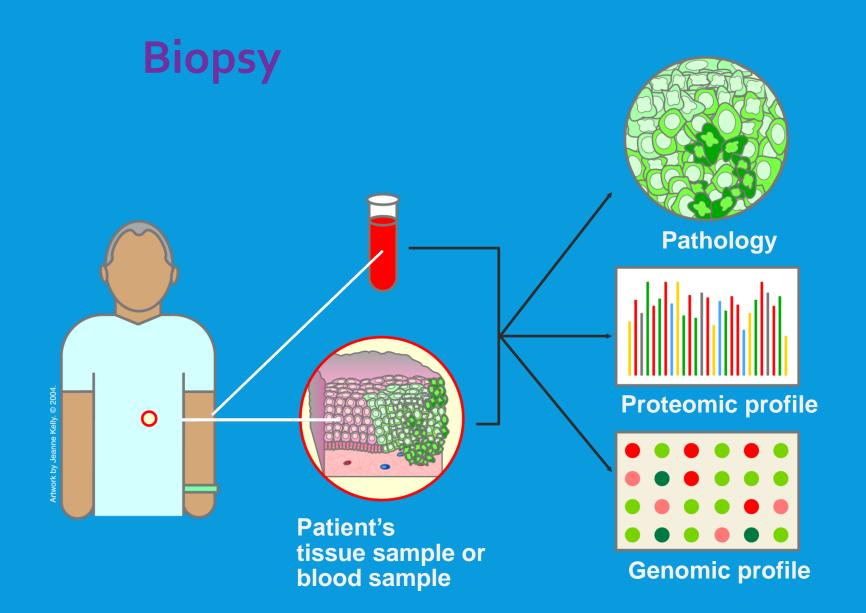
- The American Cancer Society recommends that men make an informed decision with a health care provider about whether to be tested for prostate cancer.
- Research has not yet proven that the potential benefits of testing outweigh the harms of testing and treatment.
- It is believed that men should not be tested without first learning about what is known and unknown about the risks and possible benefits of testing and treatment.
- Starting at age 50, men should talk to a health care provider about the pros and cons of testing so they can decide if testing is the right choice for them.
- If an African American male has a father or brother who had prostate cancer before age 65, they should have this talk with a health care provider starting at age 45.
- If the decision to be tested is made, the individual should get a PSA blood test with or without a rectal exam.
- How often one is tested will depend on the PSA level

- LUNG CANCER
- The American Cancer Society does not recommend tests to check for lung cancer in people who are at average risk. There are screening guidelines for those who are at high risk of lung cancer due to cigarette smoking. Screening might be right if an individual have all of the following:
- 55 to 74 years of age
- In good health
- Have at least a 30 pack-year smoking history AND are either still smoking or have quit within the last 15 years (A pack-year is the number of cigarette packs smoked each day multiplied by the number of years a person has smoked. Someone who smoked a pack of cigarettes per day for 30 years has a 30 pack-year smoking history, as does someone who smoked 2 packs a day for 15 years.)
- Screening is done with an annual low-dose CT scan (LDCT) of the chest. If you fit the list above, talk to a health care provider if you want to start screening.

WHEN TO LOOK CLOSER Change in bowel/bladder habits Unusual bleeding/discharge Sore that doesn't heal Mole or wart change Thickening or lump Nagging cough or hoarseness Indigestion/swallowing difficulty

FOUND SOMETHING, WHAT NOW?

LAB


IMAGING

INVASIVE PROCEDURES

LABORATORY INVESTIGATIONS

- Hematology studies
- Chemistry studies
- Radioimmunoassay
 - Tumor markers
 - Enzymes
 - Hormones
 - Metabolic products
 - Proteins
 - antigens
- Flow cytometry
 - DNA
 - Cell surface markers

PATHOLOGY

Cytogenetics

INDICATION FOR TEST: Gastrointestinal Tract (Colon) Adenocarcinoma, Signet-Ring Cell Type Metastatic to Hematopoietic and Lymphoid Tissue (Lymph Node)

SPECIMEN(S) TESTED: S15-35344 A2 (Massachusetts General Hospital, Boston, MA, United States)

RESULTS:

Targeted RNA next generation sequencing (NGS) using Anchored Multiplex PCR (AMP) detected no fusion transcripts in ALK, RET, and ROS1.

INTERPRETATION:

NEGATIVE for ALK, RET, and ROS1 rearrangement.

TEST INFORMATION:

We have developed Anchored Multiplex PCR (AMP) for targeted fusion transcript detection using next generation sequencing (NGS) [1]. Briefly, total nucleic acid was isolated from a formalin-fixed paraffin embedded tumor specimen after histological review for tumor enrichment. The total nucleic acid was reverse transcribed with random hexamers, followed by second strand synthesis to create double-stranded complementary DNA (cDNA). The double-stranded cDNA was end-repaired, adenylated, and ligated with a half-functional adapter. Two hemi-nested PCR reactions were applied to create a fully functional sequencing library that targets specific genes (exons) listed below. Illumina MiSeq 2 x 147 base pair paired-end sequencing results were aligned to the hg19 human genome reference using bwa-mem [2]. A laboratory-developed algorithm was used for fusion transcript detection and annotation. The integrity of the input nucleic acid and the technical performance of the assay were assessed with a qualitative reverse transcription qPCR assay and assessing the DNA/RNA content in the sequencing results. Although this assay may detect several potential fusion variants, only the most prevalent one is reported. The assay is validated for samples showing 20% or higher tumor cellularity and for clinical reporting of fusion transcripts involving ALK, RET, and ROS1.

SNAPSHOT

TARGETED GENES (EXONS):

ADCK4 (1-2, 4-6, 9-10, 12-15), AKT3 (1-2, 13), ALK (1,3, 17, 19-22, 29), AR (1-4, 6, 7-8), ARHGAP6 (1-3), ARHGAP26 (10-13), AXL(14-15), BRAF (1-2, 8-11, 17), BRD4 (1, 10-12), CCDC6 (1-8), CD74 (1-8), CHTOP(2-6), EGFR (7-9, 14-18, 23-28), ERBB2 (2-4), ERBB4 (17-18, 20), ESR1 (3-5), EWSR1 (1, 3-8, 12-13), FGFR1 (1, 7-13, 16-18), FGFR2 (3-4, 17), FGFR3 (3, 7-12,15-18), FGR (2-3), INSR (13-18, 21-22), INSRR (13-18, 21-22), JAK1 (1-7, 9-25), JAK2 (1, 6, 9, 11-12, 16-17, 19, 24), MAML2 (2-4), MAST1 (2, 8, 19-20, 26, 29), MAST2 (1, 5), MET (2, 11-16, 20-21), MUSK (8-9, 11-14), NFIB (1, 7-9), NOTCH1(2, 27-28, 34), NOTCH2 (1, 27, 33), NRG1 (2-4, 6), NTRK1 (1, 8-17), NTRK2 (9-11,13-20), NTRK3 (1, 11-16, 18 19), NUMBL (3-7, 9-10), NUTM1 (2-3), PDGFB (1-2, 6), PDGFRA (1, 9-11, 13-14, 20-23), PIK3CA (2-3), PKN1 (9-14), PLAG1 (2-4), PPARG(3-8), PRKACA (2-4), PRKCA (3-7), PRKCB (3-7), RAF1 (1, 9-11, 17), RET (1, 8-13, 19), RHOA (1-5), ROS1 (1, 31-37, 43), TMPRSS2 (1-5).

TARGETED THERAPY

TARGETED GENES (EXONS):

ADCK4 (1-2, 4-6, 9-10, 12-15), AKT3 (1-2, 13), ALK (1, 3, 17, 19-22, 29), AR (1-4, 6, 7-8), ARHGAP6 (1-3), ARHGAP26 (10-13), AXL(14-15), BRAF (1-2, 8-11, 17), BRD4 (1, 10-12), CCDC6 (1-8), CD74 (1-8), CHTOP (2-6), EGFR (7-9, 14-18, 23-28), ERBB2 (2-4), ERBB4 (17-18, 20), ESR1 (3-5), EWSR1 (1, 3-8, 12-13), FGFR1 (1, 7-13, 16-18), FGFR2 (3-4, 17), FGFR3 (3, 7-12,15-18), FGR (2-3), INSR (13-18, 21-22), INSRR (13-18, 21-22), JAK1 (1-7, 9-25), JAK2 (1, 6, 9, 11-12, 16-17, 19, 24), MAML2 (2-4), MAST1 (2, 8, 19-20, 26, 29), MAST2 (1, 5), MET (2, 11-16, 20-21), MUSK (8-9, 11-14), NFIB (1, 7-9), NOTCH1(2, 27-28, 34), NOTCH2 (1, 27, 33), NRG1 (2-4, 6), NTRK1 (1, 8-17), NTRK2 (9-11,13-20), NTRK3 (1, 11-16, 18-19), NUMBL (3-7, 9-10), NUTM1 (2-3), PDGFB (1-2,6),PDGFRA (1, 9-11, 13-14, 20-23), PIK3CA (2-3), PKN1 (9-14), PLAG1 (2-4), PPARG(3-8), PRKACA (2-4), PRKCA (3-7), PRKCB (3-7), RAF1 (1, 9-11, 17), RET (1, 8-13, 19), RHOA (1-5), ROS1 (1, 31-37, 43), TMPRSS2 (1-5).

Biological substances used to guide and monitor treatment and potential disease activity

- CEA (carcinoembryonic antigen)
 - Bladder, breast, colon, lung, ovarian, pancreatic, stomach, thyroid cancers

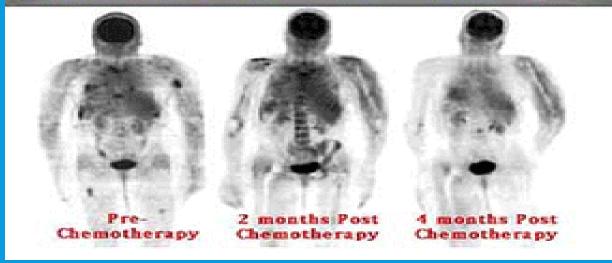
PSA (prostate specific antigen)

- Prostate
- CA-125 (cancer antigen 125)
 - Ovarian cancer
- CA 27-29
 - Breast, colon, stomach, kidney, lung, ovarian, pancreas, uterus, liver cancers
- AFP (alfa fetoprotein)
 - Liver cancer, non-seminomatous germ cell tumors

TUMOR MARKERS

- Lung
- Surveillance/initial detection

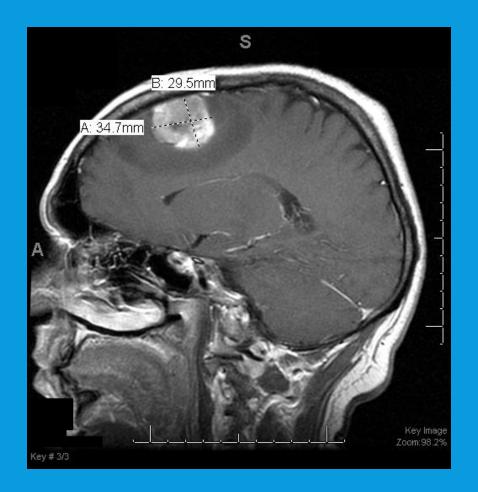
PET

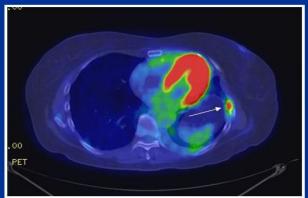

- Benign/malignant
- Guidance for bx

MRI


CT scans

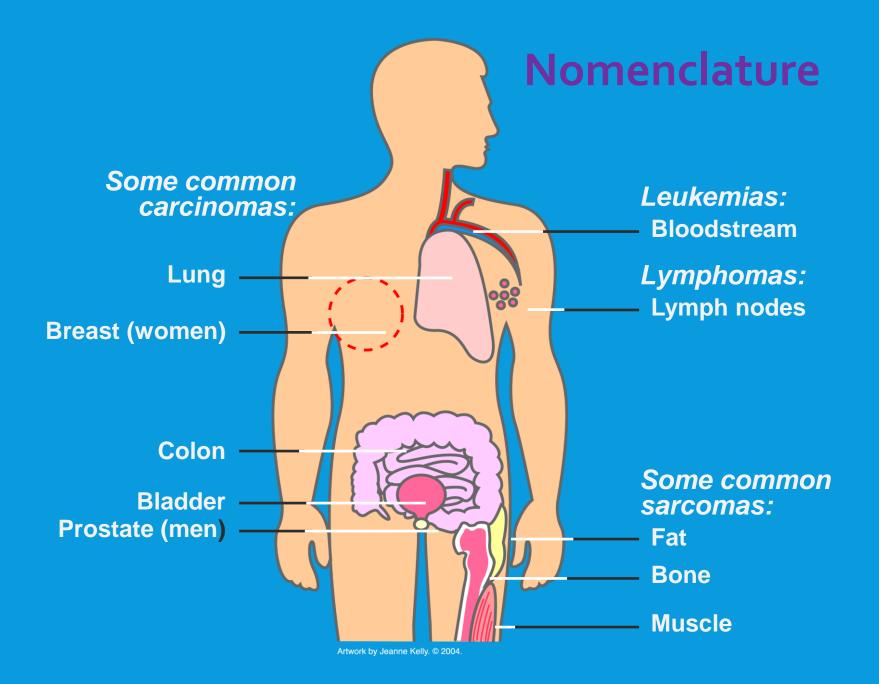
PET CT (POSITRON EMISSION TOMOGRAPHY)


Whole Body PET Study using ¹⁸FDG (¹⁸F-fluorodeoxyglucose)--60 minutes



MAGNETIC RESONANCE IMAGE

CT alone, and PET/CT Fusion


PET avid pleural nodules

INVASIVE PROCEDURES

- Endoscopy
- Biopsy
 - Surgical
 - Excisional
 - incisional
 - Needle
 - FNA
 - Core
 - Vacuum

TUMOR NOMENCLATURE

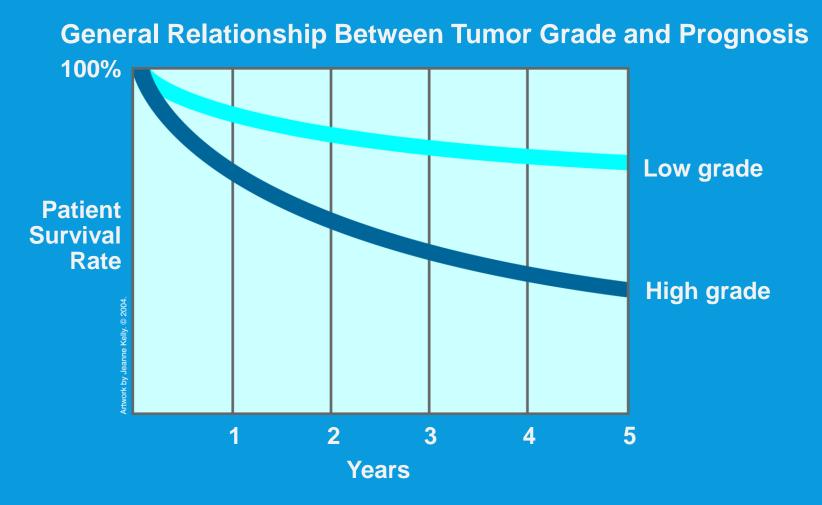
- Tissue of Origin
- Benign vs. malignant
- Solid
 - Epithelial
 - Mesenchymal
 - Neural
 - mixed
- Hematologic

Nomenclature

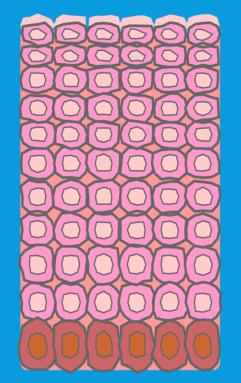
Cancer Prefixes Point to Location

Prefix	Meaning
adeno-	gland
chondro-	cartilage
erythro-	red blood cell
hemangio-	blood vessels
hepato-	liver
lipo-	fat
lympho-	lymphocyte
melano-	pigment cell
myelo-	bone marrow
myo-	muscle
osteo-	bone
	Artwork by Jeanne Kelly. © 2004.

Artwork by Jeanne Kelly. © 2004

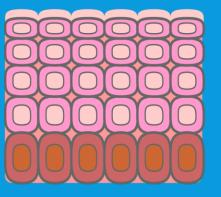

GRADING AND STAGING – WAYS TO CHARACTERIZE TUMOR GROWTH AND PROGNOSIS

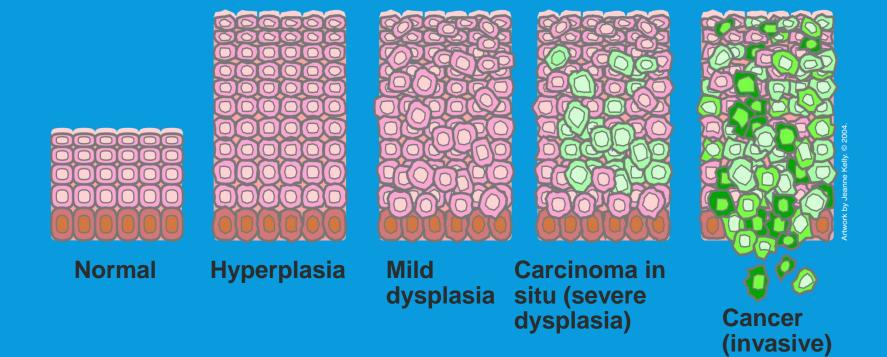
- Grading Degree of cell dedifferentiation
- Anatomic Staging Degree of spread
 TNM System-The Gold Standard


TUMOR GRADING

- GX undetermined
- G1 well differentiated, low grade
 - strong resemblance to parent cell
- G2 moderately differentiated, intermediate grade
- G₃ poorly differentiated, high grade
- G4 undifferentiated, high grade
 impossible to tell parent cell

Tumor Grading





Mild dysplasia

Normal

Which of the following represents a high grade, poorly differentiated tumor?

- 1. Grade I
- 2. Grade II
- 3. Grade III
- 4. Grade IV

STAGING

Solid Tumors

Hematologic Malignancies

TNM STAGING SYSTEM

- Determination of how extensive the malignancy is T = tumor size (also depth of invasion)
 - N = nodal status (number and location of positive Lymph Node)
 - **M** = metastatic disease

STAGING

- Solid
 - 0 4
 - Clark/Breslow Melanoma
 - Dukes Colon
- Hematologic
 - Ann Arbor NHL
 - TNM doesn't fit

TNM STAGING

Stage 0	Tis	N0	M0
Stage 1A	T1	N0	M0
Stage 1B	T1	N1	M0
	T2	N0	M0
Stage II	T1	N2	M0
	T2	N1	M0
	T3	N0	M0
Stage IIIA	T2	N2	M0
	T3	N1	M0
	T4	N0	M0
Stage IIIB	T3	N2	M0
	T4	N1	M0
Stage IV	T4	N2	M0
	Any T	Any N	M1

STAGING OF HEMATOLOGIC MALIGNANCIES

Lymphoma

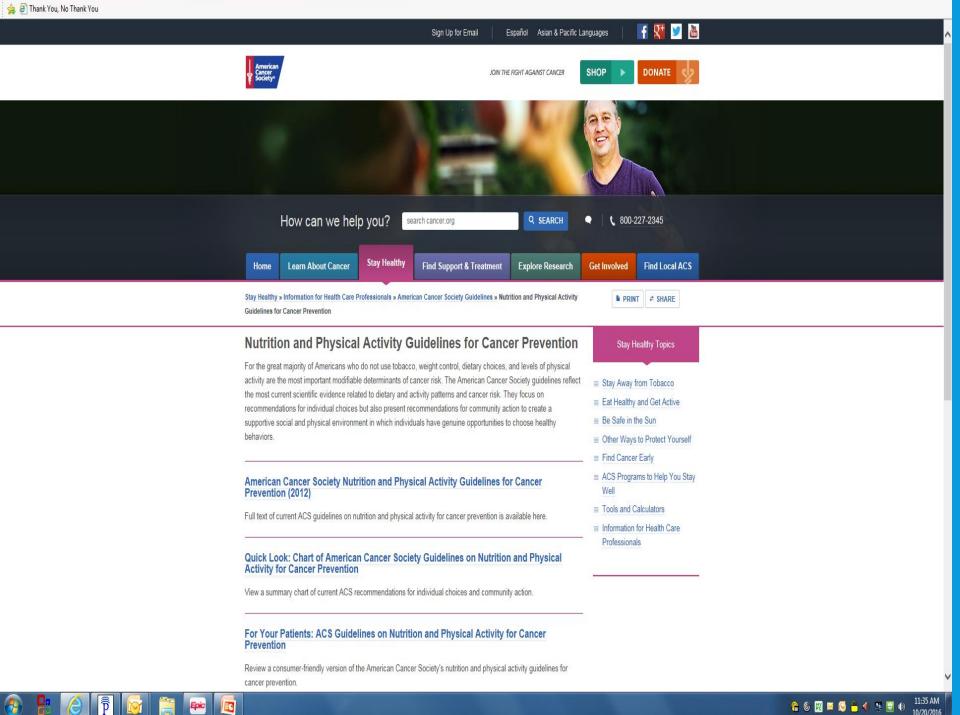
Leukemia

Multiple Myeloma

TUMOR PATHOLOGY

- Tissue of origin
- Biological behavior
- Cell differentiation
- Hetero- vs. Homogeneity
- Mitotic count
- Vascularization
- Lymphatic invasion

PREVENTION AND EARLY DETECTION


- The key to improving outcomes and survival
- Availability of preventative measures and resources for early detection is limited in developing countries.

PREVENTION

- Screening
- Risky behavior modification
- Nutrition
- Chemoprevention

CANCER PREVENTION

Avoid	Avoid Tobacco		
Limit	Limit Alcohol and Tobacco		
Consume	Consume Fruits and Vegetables		
Limit	Limit Fats and Calories		
Protect	Protect Yourself From Excessive Sunlight		
Avoid	Avoid Cancer Viruses		
Avoid	Avoid Carcinogens at Work		

EC

6

WHY ARE CANCER CLINICAL TRIALS IMPORTANT?

- Clinical trials translate results of basic scientific research into better ways to prevent, diagnose, or treat cancer
- The more people that take part, the faster we can:
 - Answer critical research questions
 - Find better treatments and ways to prevent cancer

WHY ARE CANCER CLINICAL TRIALS IMPORTANT?

- <u>Cancer Site</u> Compare statistics for selected cancer sites.
- <u>Race/Sex</u> Compare cancer statistics by both race and sex.
- <u>Race/Ethnicity</u> Compare cancer statistics by race or by the expanded race/ethnicity groupings.

WHY ARE CANCER CLINICAL TRIALS IMPORTANT?

- <u>Age at Diagnosis/Death</u> Compare statistics by age groups for a selected cancer site, race, and sex.
- <u>Sex</u> Compare the differences between male and female cancer statistics.
- <u>Data Type</u> Compare Incidence, Delay-adjusted Incidence and Mortality cancer statistics.

TYPES OF CANCER CLINICAL TRIALS

- Treatment trials
- Prevention trials
- Early-detection trials/screening trials
- Diagnostic trials
- Quality-of-life
 studies/supportive
 care studies

CLINICAL TRIAL "SPONSORS"

- CooperativeGroups
- Pharmaceutical Companies
- Investigator
 Initiated

Phase III-

Therapy

Total development time: 12.5-22 yrs.

CLINICAL TRIAL PHASES

Phase 1 trials (*helpful hint - What Dose*?)

- How does the agent(s) affect the human body?
- What dosage is safe?
- Subjects on these trials are assigned to a designated <u>dose level of the drug(s) at the time of</u> <u>enrollment</u>

Phase 1

Purpose:

To find a safe dose To decide how the new treatment should be given (by mouth, in a vein, etc.) To see how the new treatment affects the human body and fights cancer

Number of people taking part: from 20-80 participants

CLINICAL TRIAL PHASES

Phase 2 trials (*helpful hint – What Disease?*)

- Does the agent or intervention have an effect on the cancer?
- Patients enrolled in this phase trial share same tumor type and/or stage of disease

<u>Phase 2</u>

Purpose:

To determine if the new treatment has an effect on a certain cancer To see how the new treatment affects the body and fights cancer

Number of people taking part: from 100 – 300 participants

CLINICAL TRIAL PHASES

Phase 3 trials (*helpful hint - Is it better*?)

- Is the new agent or intervention (or new use of a treatment) better than the standard?
- Rare to have a placebo alone arm in a cancer treatment trial

Phase 3

Purpose:

To compare the new treatment (or new use of a treatment) with the current standard treatment

Number of people taking part: from 300 to 3000 participants

TREATMENT DEVELOPMENT

- Phase 3 Trials
 - Randomly assigned to one of two (or more) groups

WHY IS RANDOMIZATION IMPORTANT?

So, all groups are as alike as possible

Provides the best way to prove the effectiveness of a new agent or intervention

Phase 1	Phase 2	Phase 3	Phase 4
Number of Participants 20-80	Number of Participants 100-300	Number of Participants 300 - 3000* * Variable based on statistical power	Number of Participants Thousands
Time Required Up to several months Purpose Studies the safety of	Time Required Up to (2) years Purpose Studies the efficacy	Time Required One (1) - Four (4) years Purpose Studies the safety,	Time Required One (1) year + Purpose Studies the long-term
medication/treatment		efficacy and dosing This Photo by Unknown Aut	effectiveness; cost effectiveness;

ROLES OF THE CLINICAL RESEARCH NURSE

- Advocate human subject protection
- Support the informed consent process
- Regulatory specialist, collect data
- Care coordination and continuity with the research team
- Clinician direct care provider, study coordinator, advanced clinician

JASON CARTER CLINICAL TRIALS PROGRAM

NIH Center for C	CER INSTITUTE Cancer Research		Search	For Staff Login
CLINICAL TRIALS RESE/	ARCH TRAINING CAR	REERS NEWS	ABOUT CCR	
415		protein cruc of Staph infe Read more	Is function of ial to survival ections	Follow us @NCIResearchCtr Image: Construction of the construction o
Clinical Trials	Research	Train	ning	About CCR
Find a Clinical Trial	Explore Our Research	Training at C	CR	Careers
For Patients	Find a Researcher	Trainee Resou	rces	
Referring Physicians	Find a Lab/Branch	Get to Know C	CR	CCR News
Clinical Labs/Branches Clinical Trials FAQs	Research Highlights News	Opportunities Our Campuses	5	For CCR Staff

EVIDENCE BASED RESOURCES

- American Cancer Society: <u>www.cancer.org</u>
- American Society of Clinical Oncology (ASCO): <u>http://www.asco.org/portal/site/ASCO</u>
- International Association of Clinical Research Nurses (IACRN): <u>www.iacrn.org</u>
- National Cancer Institute: <u>www.cancer.gov</u>
- National Comprehensive Cancer Network (NCCN): <u>www.nccn.org</u>
- Oncology Nursing Society: <u>www.ons.org</u>
- Seer's Training: <u>www.training.seer.cancer.gov</u>

Phase 1 clinical trials primary objective is curative.

True
 False

Phase 2 clinical trials primary objective is efficacy of the medication or treatment.1. True

2. False

Phase 3 clinical trials randomize patient to test the new medication or treatment compared the following represents compared the standard of treatment.

- 1. True
- 2. False

